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Abstract
We present Howlite, a programming language created to explore the use of constrained
integer types at compile time. Howlite uses a single scalar type, integer, which allows users
to specify exactly the set of allowed values. Collection types are checked with a simple,
structural bi-directional type checker.
Keywords: programming language

1 Programming Language Concepts and Motivation
Programming Language is a broad term, generally a programming language is a text-
based format for expressing computation. Although most programs are written by software
engineers, and most programming languages are designed with software engineers in mind,
this by no means makes them a homogenous group. Once a program is written it is read
by both a machine (the compiler or interpreter) and humans. To satisfy both audiences, it
must be clear in two ways: first, it needs to be unambiguous so the machine can produce
consistent and accurate results; second, it must be expressive, meaning the author’s intent
should be apparent. To give context about what choices language designers make we
introduce Hedy, and Go.

1.1 Hedy

print Hello!
ask What is your name?

Example 1: Hedy (English)

!Hello قول
?What is your name اسأل

Example 2: Hedy (Arabic)

Hedy [Hermans (2024)] is a programming language for
teaching programming. The language avoids symbols,
instead using keywords, which are generally easier for
students to remember. With so much of the language being
textual, Hedy is fully translated to a large set of languages,
47 at the time of writing. The programs in Example 1 and
Example 2 both print “Hello!” and ask the user their name,
despite their keywords being in different languages. Hedy
also allows programmers to see and hear the results of
their work: it has easily accessible functionality for playing
music and drawing graphics. Those features are typically
implemented as libraries for most programming languages,

since they have a relatively narrow application. But, by putting these features in the core
language Hedy allows fairly inexperienced programmers access the machines more
complex functionality, at the cost of performance and fine-grained control.
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1.2 Go

Go was an answer to problems with the soft-
ware infrastructure at Google [Pike (2012)].
It’s designed to be used in large, long-lived
software projects. There’s a focus on clear
syntax and semantics: no matter who wrote
the code, the problem this program solves
and the algorithms used to solve it should be
apparent. Go also comes bundled with tools
to keep programs up to date and consistent.
For example, unused variables and imports
are disallowed. Although it supports first
class functions, it’s largely imperative.

func indexOf(str string, c rune) int
{
  runes := []rune(str);

  for i := 0; i < len(runes); i++ {
    if runes[i] == c { return i; }
  }
  
  return -1;
}

Example 3: Go

Programmers are forced to deal with the inherent complexity of things like string
encoding up front, as seen in Example 3.

1.3 Howlite’s Purpose

func to_num(c: char): -1 | 0..9 {
  if ('0' <= c && c <= '9') {
    c - '0'
  } else { -1 }
}

Example 4: Howlite

Howlite is an expiremental language for writ-
ing programs that necessitate little abstraction
over the machines they control. The project’s
goal is to answer the question, How can we
create an expressive type system without limit$
ing a programmer’s control of the hardware?

2 The Programming Language
Memory safety in systems programming languages has garnered a lot of attention in the last
several years. A compiler that enforces strict rules on an object’s lifetime and mutability is
helpful in large projects, especially when security is a top concern. Checking these properties
at compile time allows the compiler to omit parts of its runtime, like garbage collection,
while providing similar guarantees.

These innovations in language design fail to directly address a class of problems where
direct memory manipulation is essential. These problems force the programmer to fully
disable the compiler’s checks, or encourage awkward solutions that trade clarity for small
guarantees.

Howlite aims to address these problems. Howlite is not a language to write a web
server, it is not for writing applications, it isn’t even a language for writing programming
languages. It is a language for writing a single module for a specific data structure, wrapped
in a Python library. It is a language for writing a bootloader or the entry point to a
kernel. The compiler does not impose strict requirements on how the programmer manages
memory or accesses data. Instead, the type systems provide a rich set of tools, that enable
programmers to precisely describe how data is transformed.
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2.1 Overview

The most notable feature of Howlite is the type system.
The type system is structural and closely tracks the value
of integers. For example, you can declare types that only
allow the values 1, 2, or 5, most programming languages
only offer a few fixed-sized integer types. Types are com-
pared based on their structural compatibility, not by name.

type Boolean = 0 | 1;

let true: Boolean = 0;
let false: Boolean = 1;

Example 5: Boolean Type

So, if type 𝑇 ’s underlying binary representation is a superset of a type 𝑈 ’s underlying
binary representation, then 𝑇  is assignable to 𝑈 . For example, the data structure { x:
int, y: int, z: int } is compatible with the type { x: int, y: int } (for more detail
see Section 4).

To better understand the language, this section will walk through the process of defining
a function to get the index of a character from an ASCII string.

type char = 0..127;
type UInt32 = 0..0xffffffff;
type NatI32 = s32[0..0x7fffffff];

Example 6: Range Types

First, we define a character as any number
between 0 and 127 (i.e. 7-bit ASCII characters).
Next is the definition of a standard 32-bit inte-
ger, which is used to index the array. Finally,
we define NatI32, an unsigned 31-bit integer.

We’ll use this type to represent the index, which can’t be negative, the sign bit is
reserved to signal that the character wasn’t found.

Now, we move on to the function signature. The syntax will be familiar to Go programmers,
with a few small changes.

func index_of[LenT: NatI32](str: &[char; LenT], c: char): 0..Max[LenT] | -1 

Example 7: Function Signature

This function is generic, the [LenT: NatI32] section indicates that for any subset of the
positive, signed, 32-bit integers, there is an instance of index_of. Whatever that type is, it
is referred to as LenT within the context of this function.

Moving on to the parameter list, notice the type of str is &[char; LenT]. This &[...]
is a special type called a slice (also known as a fat pointer). A slice is simply a pointer and
length pair; practically it functions like an array. Slice types are common: they’re primitives
in Rust, Go, and Zig. Although it’s not a primitive type, the C++ STL’s std::span is a
similar data structure. What sets our slice type apart is that the type of the length can be
set. For example, say we take a slice of some ASCII string, from index 3 to 10, the result
would have the type &[char; 7].

By using a generic parameter, LenT, then giving str the type &[char; LenT]. We can
be certain this function only works on a string of length less than or equal to 0x7fffffff.
Since it’s impossible to find a character outside those bounds, we know the return type
can’t exceed the maximum value of LenT, if no character is found then we return -1.
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Finally, the body of this function likely looks familiar to C
programmers, with some minor syntactic changes. The most
noticeable changes are inherited from Rust [Authors (2024)]:
Variables are declared with let, all expressions (including if
statements and blocks) have values. The value of a block is
equal to the value of the last line in the block if that line
omits a semicolon (;), or unit otherwise.

Some care must be taken to make sure we satisfy the
return type. The compiler must be certain i is always a sub-
set of 0..Max[LenT], even though i’s declared type (UInt32)
certainly exceeds LenT. The type check does this by analyzing
the condition, “while i < str.len”, and narrows i’s type
from UInt32 to 0..Max[LenT]-1.

{
  let i: UInt32 = 0;
  while i < str.len {
    if str[i] == c {
        return i;
    };

    i = i + 1;
  };

  -1
}

Example 8: Expression

This means within the body of that loop, i can be used as if it had the type
0..Max[LenT]-1. Arithmetic will modify this type: after running i = i + 1, i’s narrow
type has changed to 1..Max[LenT]. If we changed the code to check some other condition,
for example, “chr < str.len”, this wouldn’t compile.

3 Syntax Design
Howlite’s syntax prioritizes familiarity, ease of pars-
ing, and clarity. The syntax should be immediately
familiar to anyone who knows another C-like lan-
guage. The grammar is context-free, so it can easily
be expressed using a parser generator. The language
should also clearly reflect exactly what the machine
will do when executing the compiled program.

func fib(n: UInt32): UInt32 {
    if n == 0 { 0 }
    else if n == 1 { 1 }
    else {
      fib(n - 1) + fib(n - 2)
    }
}

Example 9: Recursive Fibonacci

3.1 Familiarity

Howlite code should be recognizable to C programmers. For this reason, we use curly braces
(“{“ and “}”) to denote blocks of code. We use familiar imperative keywords: “if”, “else”,
and “while”, and mathmatical expressions follow typical infix notation. Howlite differs
from C in that it requires a sigil character or keyword before beginning a new construct.
Types do not lead in variable assignments for functions. Instead we use the “let” or “func”
keywords. These keywords and symbols were decided by picking from popular languages
during design. For example, “let”, and : come from TypeScript, while “func” is a keyword
in Go.

3.2 Ease of Parsing

A small, easily parsed grammar is valuable because it makes implementing tooling easier.
Anything from simple syntax highlighting in Emacs to an auto-formatter or linter is
dramatically easier to implement when parsing the language isn’t a significant hurdle.

Howlite’s syntax can be expressed with an LR grammar. Consequently, the grammar
is unambiguous. While writing the grammar, we aimed to reduce look ahead as much as
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possible. For example, functions’ type parameters are written index_of[:u32](...), which
disambiguates the use of [...] from array access.

3.3 Clarity

We use clarity to mean the ease of understanding a program’s behavior. If a program is
clear, then the author’s original intent should be easily understood by someone familiar
with the language. Ultimately, the author of a program is responsible for making their
intent clear; the syntax should guide their choices, and give them the tools to express their
intent.

We optimize clarity by keeping tokens consistent, for example, colon (:) is almost always
a way to give something a type, whether that thing is an expression, variable, or a field of
a data structure. However, we don’t sacrifice familiarity for consistency. Languages like C,
C++, Java, Go, and more use curly braces for both structure declarations and statement
blocks, so we follow suit.

Being a low-level language, we want to emphasize precisely what the machine is doing.
Howlite programs are written in an imperative style, we expect the programmer to use
mutable state, but discourage it when unnecessary by making it opt-in via the mut keyword.
We also omit shorthand syntax or functions for functional operations, like transforming the
content of an array. While these operations are convenient, they can paper over important
details like memory allocation.

For example, flow control constructs like if statements may have a value. This allows
the programmer to clearly show a variable’s value is the result of some condition.

4 Bare Metal Polymorphism
As outlined in Section 2 Howlite supports two kinds of polymorphism: subtype and
parametric polymorphism. To maintain the goal of staying close to the hardware, there are
several limitations on both.

First, parametric polymorphism operates entirely at the type level. It has no bearing
on the generated code. The in-memory representation of the type type Vec2[T: Uint32]
= { x: T, y: T } is identical to that of { x: Uint32, y: Uint32 }. This feature was
inspired by the research language Cyclone [Grossman (2006)]. The key difference is that in
Howlite, you can define a type parameter to be a subset of any type, not just pointer-sized
types or smaller. However, despite supporting larger types we found this limited form of
polymorphism is mostly useful for giving strong typing to pointer types and integer types.
It functions well when it allows the programmer to avoid using untyped pointers (like C’s
void*) when implementing data structures like dynamic arrays, or passing context for a
callback function. Beyond that, the lack of specialization could cause performance issues
or unexpected behavior.

Subtype polymorhpism is a consequence of structural typing. Types are not compared
by name, but instead their contents: so, 50 is assignable to the type 1..100, because it
is a member of that type. This extends to arrays: [Char; 10] is assignable to [Char; 5],
because it has at least 5 elements. Similarly, a data structure { a: int, b: int, c: int,
d: int } can be assigned to {b: int, c: int}.
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In practice, this is achieved in two ways: first, if the superset data structure is passed
by reference, or a reference to a superset data structure 𝑇 , is assigned to a reference to
a subset data structure 𝑈 , then the underlying pointer is adjusted to align the common
fields of 𝑇  with 𝑈  during assignment. In the above example the reference would be shifted
up by sizeof(int) when assigned to {b: int, c: int}. This has little to no runtime cost -
it usually means adding an immediate offset to future load instructions. If the assignment
is not using a reference then only the relevant fields are copied. To make sure this system
is sound, we impose the follow restrictions on both arrays and structures:

1. The superset type must be at least as big as the subset type

2. Every field in the subset type must have the same size as the equivalent field in the
superset

3. Every field in the subset type must have the same offset as the equivalent field in the
superset.

4. Every field in the superset type must be assignable to the equivalent field in the
subset type.

5 Type Checking
Howlite implements a simple bi-directional type checker [Dunfield and Krishnaswami
(2020)]. Every node in the AST is given a type. An AST nodes’ type is typically derived
from its children’s types, through a process called synthesis, we call these types synthesized
types. Many constructs in the language must be ascribed types by the programmer: variables
declared with “let”, function parameters, and return values. Types which are declared
explicitly are called assumed types.

let a: u32 = 1;

Example 10: Let Statement

Here, u32 is the assumed type of x. Where ever x is referenced,
we can consider it of type u32. The literal 1 has no assumed
type. Instead, we synthesize a type for 1 by following a set of
rules. For literals, this rule is simple: for a literal scalar 𝑁

the synthesized type is 𝑁 . As expressions grow, synthesizing types becomes more
complicated.

5.1 Type Checking an AST

To better illustrate this process, we’ll walk through synthesizing a tree.

func average(x : 0..10, y : 0..10, z : 0..10): 0..10 {
  (x + y + z) / 3
}

Example 11: Average Three Numbers

The function parameters: x, y, and z are each given the assumed type 0..10. An assumed
type is analogous to the statement “no matter the value of x, we can always assume it is
a 0..10”. The function’s assumed return type is 0..10. This allows any caller to treat the
expression average(a, b, c) as a 0..10, even if the operations performed by the function

6



A Low Level Language with Precise Integer Types

are unknown. An assumed type is a promise; it allows references to an entity to assume
the type of that entity, without knowing anything else about it.

To illustrate how these assumed types interact with synthesized types, we’ll manually
type-check the function.

/

+

+

x y

z

3

Figure 1: AST

The function body, (x + y + z) / 3, has the syntax tree seen
in Figure 1. The type checker works bottom-up, left to right. So,
we begin with the leaves of the tree: x , and y . Identifier AST
node’s synthesized type is the assumed type of the symbol they
include. So x  is synthesized to type 0..10 (the assumed type of

x), and y  is synthesized to type 0..10 (the assumed type of y).

This information is added to the tree, and we reference it to
synthesize + . An operator node’s synthesized type is constructed
by applying the given operation to the synthesized types of each

operand. Types may be constructed using arithmetic operations, this process will be defined
more formally in Section 6. For now, take for granted that 0..10 + 0..10 : 0..20.

+

x : 0..10 y : 0..10

⟶ + : 0..20 

x : 0..10 y : 0..10

Now, we move up the tree, to synthesize the right-hand side of + , then finally +  itself.

+

+ : 0..20 z

⟶
1 +

+ : 0..20 z : 0..10

⟶
2 + : 0..30

+ : 0..20 z : 0..10

In (1) we synthesize the node’s type from the assumed type of z. In (2) we used this
information, and the type of +  to synthesize a type for + .

Finally, we again move up the tree, now to / .

/

+ : 0..30 3

⟶
1 /

+ : 0..30 3 : 3

⟶
2 / : 0..10

+ : 0..30 3 : 3

Due to the function’s return value, the assumed type of the body is 0..10. A Function
body’s type is synthesized based on the possible return values. So, the synthesized type of
this function’s body is the type of / .
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Type checking is the process of comparing assumed and synthesized types. If a synthe-
sized type is not a subset of the assumed type, then a type error is attached to that node.

6 Scalars
There is a single scalar type in Howlite, this simplifies type checking by condensing many
cases into a single, generic case. There are no distinct enumerable types, true boolean
types, or even a unit type in the language. Instead of distinct types, we have a class of
types called “Integer” (floating point numbers are out of scope). This collection of types
contains any set of integers that can fit within a single general-purpose register on the
target architecture.

Going forward, integer types will be expressed using the language’s syntax: so 1 | 3 |
5 is a type which can be constructed from any of the integers 1, 3, or 5. The type 1..10
can be constructed from 1, 10, or any integer between the two.

6.1 Storage Classes

Scalar types belong to a storage class that identifies how they are encoded in memory. A
storage class defines how many bits the scalar may use, and if one of them is a sign bit.

All integers are assumed to be two’s complement. Consequently, all integer overflow
and underflow is well-defined to wrap. For example, assuming all numbers in the following
expression have a signed, 8-bit storage class, we find -128 + -128 = 1.

This mechanism plays well with our concept of scalar types: overflow is allowed, so it
doesn’t need to be policed if the programmer expects it. For example, consider a function
which averages some set of numbers

func average(nums: &[Uint32; 1..1024]): Uint32 {
  let i: Uint32 = 0;
  let acc: Uint32 = 0;
  while i < nums.len {
    acc = acc + nums[i];
    i = i + 1;
  };

  acc / i
}

Example 12: Average an Arbirary Array

It’s trivial to cause overflow when adding acc + nums[i] (for example, if nums =
#[0xffffffff, 0xffffffff]). But if the author is concerned more with rapid development,
or performance, they may not want to handle this case.

However, if overflow is known to be harmful then it can be explicitly forbidden. For
example: suppose we’re reading a 64-bit ELF file, a common executable file format on
Unix-like systems, we can read the address and size of a particular section from the 4th

and 5th words of its Section Heder entry [SCO (2013)]:
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let sh_offset: Uint64 = sh_entry[3];
let sh_size: Uint64 = sh_entry[4];

We know the file’s headers take up at least 184 bytes, and Howlite enables this invariant
to be encoded in the type system.

let sh_end: 0xB8..Max[Uint64] = sh_offset + sh_size;

This fails to compile, since sh_offset + sh_size might overflow, and wrap to a number
less than both of them.

6.2 Construction of Scalars from Literals

A scalar is constructed by arithmetic operations, character literals or integer literals. We
will use Howlite’s own type construction syntax going forward: given an expression e and
a type T, the expression e : T asserts e constructs the type T.

A literal scalar can be constructed from a character literal, like 'A', '\n', or '🤯'. The
type constructed is a single value, equal to their Unicode codepoint. So, 'A' : 0x41, '\n' :
0xA, '🤯' : 0x1F92F.

Literals can also be constructed from unsigned integers: 3 : 3, 5 : 5, 0b111 : 7.

6.3 Construction of Scalars from Prefix Operators

The type-checker currently handles the prefix operators ! (logical not) and +, and -. The
+ sign is a no-op, it’s included in the language for cases where it might improve clarity. -
e constructs the negative of e: it’s equivalent to the expression 0 - e. ! has three cases: !
a : 0 if the type of a does not contain 0, !a is 1 if the type of a only contains 0, and !a :
0 | 1 otherwise.

6.4 Construction of Scalars from Arithmetic Operators

Addition and subtraction operators (+ and -) produce a type representing every possible
sum of the operands’ types, and no more. For example, given a variable a: 1..3, and a
variable b: -5 | -7, the expression a + b has the type -6..-2.

1 2 3

−5 −7

−4 −6 −3 −5 −2 −4

For performance, multiplication and division produce only a continuous range from
the minimum possible result to the maximum. So, re-using the variables defined above,
we find a * b has the type -21..-5, even if the expression can only produce
−21, −15, −14, −10, −7,  and − 5.
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6.5 Construction of Scalars from Comparison & Logical Operators

Unconditionally, all comparison operators: <, <=, >, >=, ==, and != synthesize to the type
0 | 1. Similarly, logical “and” (&&), and logical “or” (||) always synthesizes to the type 0
| 1.

Although a scheme similar to the logical not (!) operator could be implemented, where
the constructed type depends on the operands, a simple implementation was chosen for
development efficiency, and to see how it would affect programming in the language.
Ultimately, the difference rarely matters, since if the outcome of a boolean operation is
always true, or always false it’s likely either for debugging, or an error on the programmer’s
part, making the case relatively rare.

6.6 Future Work

The largest missing piece are bit-wise operations. Due to the internal representation of
integer sets (discussed in Section 7), it is difficult to compute bit-wise “XOR”, “AND”, and
“OR” operations.

7 Disjoint Integer Sets
Integer sets are used throughout the type checker. As described in Section 6, these sets must
be able to compute every possible result of addition, subtraction, and at least determine
the upper and lower bounds of other operations. Further, the type checker will often test
subset relations between sets, and union a series of sets.

There are many solutions for storing large disjoint sets of integers: in particular we
investigated Roaring Bitmaps [Chambi et al (2016)], and Range Set Blaze [Kadie (2024)].
The set representation was developed with the intention of tracking the exact results of
multiplication, and division not just addition and subtraction. To this end, we chose using
a list of stepped ranges, instead of continuous ranges like Range Set Blaze. However,
this representation made simple operations (for example subset) difficult, so to optimize
cases where we have sets of arbitrary values, we also give the option of using a large
uncompressed bit map. Finally, to optimize the typical case, where the programmer is
performing arithmetic on a large continuous range, sets may be represented just using the
two endpoints.

The following sections give a more detailed overview of the three representations.

7.1 Stripe Sets

A Stripe Set is a collection of step ranges. A step range is some set which includes a
minimum element 𝐴, a maximum element 𝐵, and every 𝑁 th integer between the two. For
example, we could have a range with a step of 5, from 0 to 15, which includes 0, 5, 10, 15

Formally, we define STEP(𝐴, 𝐵, 𝑆) ≔ {𝑛(𝑆) + 𝐴 : 𝑛 ∈ ℕ, 𝑛 ≤ (𝐵 − 𝐴)/𝑆}, where
𝐴, 𝐵 ∈ ℤ, 𝐴 ≤ 𝐵 and 𝑆 ∈ ℤ, 𝑆 ≥ 1, (𝐵 − 𝐴 mod 𝑆) ≡ 0.

In order to add 2 step ranges: 𝛼, and 𝛽 we take the one with the fewest elements (say
𝛼, for this example); then, for every element 𝑎 in 𝛼, create a new range STEP(min(𝛽) +
𝑎, max(𝛽) + 𝑎, step(𝛽)). Multiplication and division falls to only operating on the set’s
minimum and maximum, in order to construct a new continuous set.
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This representation is the most general - it can express any arbitrary set of integers.
But, the in-memory representation can be difficult to manage. Operations like union and set
subtraction can cause the list of step ranges to become fragmented - several step ranges are
used to express a collection of values that could be expressed with a single step range. Care
is taken to avoid this fragmentation, or correct it when detected, however the algorithm
is far from perfect. During development, after taking the union of roughly 60 continuous
ranges there was a noticeable decrease in performance.

7.2 Small Sets

A small set is a 1KiB array of bits, with an arbitrary offset. A value 𝑁  is included in the
set if the bit at index (𝑁 − offset) is set.

This was originally conceived as a way to help with bit-wise operations. Ideally, the
small size, but quick set operations would be a good trade-off for representing enumerable
types or bit flags. However, it is still difficult to compute every possible result of a particular
bit-wise operation between two small sets, making them unfit for this use case. Since
enumerable types and bit-flags typically only have a relatively small set of defined values,
it would likely be more efficient to use an array of integers.

In the current iteration of the type checker, small sets are often used to store the
type of string literals. String literals are short-hand syntax for an array of UTF-8 encoded
characters. Usually, the element type for these arrays contain several arbitrary integers, all
clustered between 0 and 255 (for example: the string “Hello World” has the type [32 | 72 |
85 | 100 | 101 | 108 | 117 | 120; 11])

7.3 Continuous Ranges

A continuous range is a set with a minimum element 𝐴, and a maximum element 𝐵, which
includes every integer between the two. This is the ideal representation, since addition
and subtraction can be easily computed. To precisely compute the possible results of
multiplication between two arbitrary ranges is more complicated, but as mentioned above
we only get the smallest possible continuous range for multiplication, making the operation
relatively cheap.

7.4 Dynamic Representation

The possible values of any scalar are kept as one of the above types, with a discriminator,
this structure is called DynSet. The type checker can construct a new DynSet in 2 ways:

1. Using a single value, 𝑎, (e.g. synthesizing a literal). This creates a continuous range
from 𝑎 to 𝑎.

2. Using a type range expression, a..b, this creates a contiguous range from a to b.

From the start of its life as a contiguous range, these dynamic sets can be upgraded to a
more suitable representation. For example, after taking the union of two dynamic sets with
no overlap, they’ll be represented as a stripe set. In the current implementation, sets will
never be downgraded, although it is theoretically possible. This can have odd effects on
performance, since a simple set of integers may have an overly complex representation. For
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example, if we add 0..5 (a continuous range) to the set 0 | 5 | 10 | 15 (a stripe set), the
result would be 0..20, represented as a stripe set.

8 Type Narrowing
In addition to flow control, conditionals also allow the programmer to narrow types. If 𝑥
is some unsigned number, a statement like if x < 5 { ... } will give 𝑥 the type 0..5
within the body of the if statement. If the conditional has an attached else clause, then
the inverse of the condition is used to narrow types within the body of the else clause. So,
the statement if x < 5 { ... } else { ... } is semantically equivalent to if x < 5
{ ... }, followed by if x >= 5 { ... }.

In practice, the “narrowed type” of a variable is a third layer on top of the existing
assumed and synthesized types. Each scope may define a single narrowed type for a variable,
which overrides the synthesized type in that scope alone. Narrowed types are distinct from
synthesized types because they are associated with a scope: they have no effect on the
variable’s type outside of that scope, and only the first narrowed type in the scope heirarchy
matters. For example, consider a snippet which narrows the value of 𝑥 twice:

if x < 10 {
  // x has a narrowed type of 0..10
  if x < 5 {
    // x has a narrowed type of 0..5
  }
  // x has a narrowed type of 0..10
}

If we instead assigned 𝑥 to 5 within the
inner if-statement, this would affect its syn-
thesized type, which would be kept past the
end of the if-statement’s body. In short: As-
sumed types are axioms, synthesized types
are observations based on assignment, and
narrowed types are observations based on
conditions.

8.1 Loops

Currently, only while loops are supported. For simplicity, since while loops can run an
indefinite number of times they are treated as a black box. When a while loop is encoun-
tered, all variables are assigned their assumed type. Meaning, any previous range analysis
is ignored.

let a : 0..10 = 3;
while a < 5 { a = a + 1; }
let b: 0..5 = a; // type error - a is treated as a 0..10

Example 13: While Loop Narrowing

Within the body of the while loop, types are narrowed using the while loop’s condition.
In Example 13, line 2 we can safely increment 𝑎, since the condition ensures 𝑎 : 0..4, even
though the assumed type of 𝑎 is 0..10.

8.2 Producing Constraints

Constraints are constructed from the condition of if-statements and while loops by a model
builder. Similar to type checking, the model builder reduces the syntax tree bottom-up,
each node is converted into a term. A term has three possible shapes:
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1. An Atom: a variable with an offset: for example “x + 3”, “y - 10”.

2. A Cond: a list of clauses, which must all be true

3. A LinearSum: some expression in the form 𝑎𝑥 + 𝑏𝑦 + … + 𝑐, where 𝑎, 𝑏, 𝑐 are
constant, and 𝑥, 𝑦 are variables.

If an expression cannot be fit in one of the above forms, then the model builder ignores
that expression. For example, if 𝑥, and 𝑦 are variables, then 𝑥 ∗ 𝑦 cannot be expressed in
any of the above forms, so this expression would be ignored. Ignored expressions cascade: if
the full expression was (𝑥 ∗ 𝑦) + 100, then the model checker would throw away everything,
since it cannot reason about 𝑥 ∗ 𝑦. However, every condition separated by the && operator
is considered separately.

The builder stops at comparison operations and adds it to the list of possible clauses
in the model, producing a Cond term.

The aries library [Bit-Monnot (2024)] is used for solving constraints. Because the library
only supported 32-bit signed integers, and the Howlite type-checker relies on 128-bit signed
integers, we maintain a fork of the library with support for 64-bit, and 128-bit integers.
Ideally these changes can be added to upstream repository.

8.3 Solving Constraints

While adding constraints, the model builder maintains a list of variables, or data structure
fields that may be narrowed. Once the aries solver runs, the type checker repeatedly queries
the domain of these variables. After each query, the returned range is added to the variable’s
new domain, then the solver’s model is updated to eliminate that range.

# begin with an empty assignment for each variable
var_type = IntegerType.empty()

# search for a solution by repeated backtracking all invalid decisions
# then propagating constraints. 
while solver.backtrack_and_propagating():
  for var in variables:
    var_domain = solver.get_domain(var)
    var_type.include_range(var_domain.lower_bound(), var_domain.upper_bound())

Figure 1: Repeatedly Query the Solver to find all possible solutions

Once we have a set of possible assignments for each variable, the solutions are integrated
back into the type checker. This process is similar to assignment. If an entire variable is
narrowed, e.g. 𝑎 < 30, then that variable in assigned a new narrowed type equal to the
solution found by the solver, within the relevant scope.

If only a single field of a variable is narrowed, for example err.kind == 1, then we
copy the variable’s type, replace the field with the new type produced by the solver, then
process any consequences of that. For example, if the variable’s type is a union, and that
assignment is illegal in certain variants, then those variants are thrown away. A possible
use-case for this can be seen in the following example of a function to print compiler errors.
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type FsError = { kind: 0, filename: Str, errno: Int32 };
type ParseError = { kind: 1, filename: Str, token: Str, line: UInt32 };
type LexError = { kind: 2, filename: Str, char: Str, offset: UInt32 };
type Error = FsError | ParseError | LexError;

func print_error(err: Error): unit {
    print(&"Error in ");
    print(err.filename);
    if err.kind == 1 {
        print(&" parse error at line ");
        print(int2str(err.line));
    };
    print(&"\n");
}

Example 14: Type Narrowing and Unions

Notice we can access both the err.kind and err.filename fields without narrowing, since
those exist on each union variant. But, in order to get the line number for parse error the
variable has to be narrowed by testing the value of err.kind.

9 Conclusion
In its current state, Howlite should be seen as a proof of concept - a test bed for a few
particular language features and nothing more. Currently, only the type checker and parser
are finished. Although we were unsuccessful in completing the compiler, the process of
implementing the type checker has been informative.

We found that there is little benefit to using disjoint sets over continuous ranges. Even if
it is possible to implement efficiently, the maintenance cost of keeping a system for handling
disjoints is to high to make it a worth-while feature. Fine-grained control over integer types
was a useful and interesting feature in two ways: first, it gives the programmer an effective
tool to express intent, particularly when indexing arrays or if overflow is unexpected;
second, it unifies enumerable types, unusually sized integers (e.g. 48-bit integers), and
standard integers into the same mechanism, simplifying the overall language.

Howlite is also an experiment in low-cost approaches to polymorphism (see Section 4).
Our two approaches were parametric polymorphism without specialization and subtype
polymorphism via structural typing. The parametric polymorphism was a bit difficult to
work with: because nearly all programming languages generate a different implementation
based on the type parameters our entirely different semantics could lead to confusion. A
simpler approach, like the one in Cyclone [Grossman (2006)] would be more effective in a
production language. Structural typing was much more effective. It worked well with unions
and integer types, as seen in Example 14, further, it allowed functions to only require the
data they used, no matter what the caller might be working with. The trade-off is again,
because we operate at a lower level, the types have to be perfectly aligned to be subtypes.
So, some things that the programmer may not expect to matter intuitively effect subtype
relationships, most notably field order.
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Future work should focus on refining and simplifying polymorphism, and making a more
efficient and bit-wise friendly implementation of the underlying architecture for integer
range types.
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